СИСТЕМЫ КОМПАКС®
АВТОМАТИЧЕСКАЯ ВИБРОДИАГНОСТИКА И
КОМПЛЕКСНЫЙ МОНИТОРИНГ СОСТОЯНИЯ ОБОРУДОВАНИЯ
Русский Русский     EnglishEnglish 
Меню
Главная
Продукция
Клиенты и отзывы
О фирме
Сибирский научный центр мониторинга РИА
Новости
Публикации
Контакты
Бесплатная линия
Горячая линия НПЦ «Динамика»
Награды
  • 2016 г. «Заслуженный инженер России»
  • 2016 г. «Признание»
  • 2016 г. «Импортозамещение»
  • 2016 г. «Инновации и качество»
  • 2015 г. «Заслуженный руководитель»
  • 2015 г. «100 лучших товаров России»
  • 2015 г. «ESQR’s Quality Achievements Awards»
  • 2014 г. «Конкурс ОАО «РЖД» на лучшее качество подвижного состава и сложных технических систем»
  • 2014 г. «Высокоэффективная организация»
  • 2014 г. «Надежный поставщик»
  • 2014 г. «Лидер отрасли»
  • 2014 г. «Бухгалтер года»
  • 2014 г. «Технологический прорыв»
  • 2013 г. «Деловая элита России»
  • 2013 г. «100 лучших товаров России»
Облако тегов
Мы в соцсетях
Вконтакте Facebook Twitter YouTube Google+ RSS
Сертификация
В 2001 г. проведена добровольная сертификация системы менеджмента качества НПЦ «Динамика», а в 2018 г. проведена ресертификация  на соответствие международному стандарту ISO 9001:2015, подтвердившая высокий уровень управления качеством продукции и услуг
Счетчики
Rambler
Яндекс цитирования Рейтинг@Mail.ru
Система Orphus
Главная Публикации Статьи

Разработка метода комплексного диагностирования тяговых электродвигателей

Печать

Тяговый электродвигатель (ТЭД) является одним из важнейших узлов электроподвижного состава (ЭПС). Количество отказов ТЭД из общего числа отказов ЭПС - около 30%. В случае отказа одного из ТЭД происходит увеличение нагрузки на остальные двигатели, что приводит к сокращению их срока службы.

В настоящее время существует ряд проблем диагностирования ТЭД:

  • отсутствие современных диагностических комплексов в депо и на ремонтных заводах;
  • отсутствие системности: каждая система диагностирует определенные параметры ТЭД, которые не попадают в общую базу на конкретный ТЭД.

В статье предлагается метод комплексного диагностирования тяговых электродвигателей, который позволит перевести ремонт тяговых электродвигателей от ремонта по пробегу к ремонту по фактическому техническому состоянию.

Литература

  1. Костюков В.Н. Мониторинг безопасности производства. М.: Машиностроение, 2002. 224 с.
  2. Костюков В.Н., Науменко А.П. Основы диагностики и мониторинга машин: учеб. пособие. - Омск: Изд-во ОмГТУ, 2011. - 360с.
  3. Мельк В.В., Метод диагностирования ТЭД // Наука, образование, бизнес [Текст]: материалы Всерос. науч.-практ. конф. ученых, преподавателей, аспирантов, студентов, специалистов промышленности и связи, посвящ. 15-летию ИРСИД / Ин-т радиоэлектроники, сервиса и диагностики. Омск 2012, с. 200-202.

 

Мельк В.В. Разработка метода комплексного диагностирования тяговых электродвигателей // Эксплуатационная надежность локомотивного парка и повышение эффективности тяги поездов: матер. Всероссийской науч.-техн. конф. с междунар. участием. - Омск: ОмГУПС, 2012. - С. 417-421

Скачать публикацию


Теги: диагностика электропоезда тяговый электродвигатель Дата: 15.09.2015
Просмотров: 1208
 

Оценка возможности использования фрактального анализа для целей диагностики машинного оборудования

Печать

В технической диагностике главной задачей является распознавание технического состояния объекта в условиях ограниченной информации. Анализ состояния проводится в условиях эксплуатации, при которых получение информации крайне затруднено, поэтому часто не представляется возможным по имеющейся информации сделать однозначное заключение и приходится использовать статистические методы.

Распознавание зависит от полноты информации, чем больше информации об объекте, тем меньше ошибок. Актуальным является поиск новых источников информации об объекте.

Наряду со статистическими методами в вибродиагностике широко распространен метод спектрального анализа, который позволяет охарактеризовать частотный состав измеряемого сигнала. Менее распространены методы кепстрального и вейвлет анализа. В целях повышения надежности и точности распознавания предлагается также использовать методы фрактального анализа.

Литература

  1. Кучер, В.Я. Основы технической диагностики и теории надежности: письменные лекции / В.Я Кучер. – СПб.: СЗТУ, 2004. – 48 с.
  2. Мандельброт, Б. Фрактальная геометрия природы / Б. Мандельброт. – М.: Институт компьютерных исследований, 2002. - 656 с.
  3. Федер, Е. Фракталы: пер. с англ. / Е. Федер. – М.: Мир, 1991. – 254 с.
  4. Костюков, В.Н. Основы виброакустической диагностики и мониторинга машин: учеб. пособие / В.Н. Костюков, А.П. Науменко. – Омск: Изд-во ОмГТУ, 2011. – 360 с.

 

Костюков В.Н., Бойченко С.Н., Павленков Д.В. Оценка возможности использования фрактального анализа для целей диагностики машинного оборудования // Эксплуатационная надежность локомотивного парка и повышение эффективности тяги поездов: матер. Всероссийской науч.-техн. конф. с междунар. участием. - Омск: ОмГУПС, 2012. - С. 153-157

Скачать публикацию


Теги: вибродиагностика техническая диагностика фрактальный анализ диагностика машин Дата: 25.08.2015
Просмотров: 1284
 

Выбор параметров для диагностирования оборудования вспомогательных цепей электропоездов

Печать

Повышение эксплуатационной надежности моторвагонного подвижного состава (МВПС), а также своевременное обнаружение и устранение дефектов на начальной стадии их развития является одной из важнейших задач по повышению качества технического обслуживания и ремонта МВПС при сокращении эксплуатационных расходов и сроков нахождения в ремонте и техническом обслуживании.

Существующее положение, при котором подвижной состав поддерживается в надлежащем техническом состоянии за счет системы планово-предупредительного ремонта, предполагает расход большого числа ресурсов на проведение плановых ремонтных работ вне зависимости от фактического технического состояния того или иного агрегата в составе секции МВПС. В то же время скрытый характер зарождения дефектов и развития неисправностей приводит к внеплановым постановкам секций МВПС на ремонт и к дополнительным затратам.

Решением выше обозначенных проблем может служить бортовая система мониторинга технического состояния, оценивающая в реальном времени состояние каждого агрегата и дающая объективную информацию о целесообразности его дальнейшей эксплуатации. Эффективность такой системы заключается в ее непрерывной работе, то есть постановке диагноза с периодом, во много раз меньшим периода развития неисправности до критического (аварийного) состояния, что открывает возможность для постепенного перехода на эксплуатацию по фактическому техническому состоянию с уходом от ресурсоемкой планово-предупредительной системы ремонта.

Оборудование вспомогательных цепей, в том числе и система вспомогательных машин, является одним из наиболее ответственных, обеспечивая нормальное функционирование всех без исключения систем электропоезда.

Необходимость мониторинга состояния этого оборудования в реальном времени обусловлена более тяжелыми, по отношению к машинам общепромышленного применения, условиями эксплуатации: колебание напряжения контактной сети, значительные перепады температур, повышенная влажность, а так же вибрация. Все эти факторы в конечном итоге могут привести к преждевременному выходу из строя машины и внеплановому ремонту.

Литература

  1. Сизов С.В., Аристов В.П. (ОАО «РЖД»), Костюков В.Н. (ОмГУПС), Костюков Ал.В. (НПЦ «Динамика»). Безопасная ресурсосберегающая эксплуатация МВПС на основе мониторинга в реальном времени. М: Наука и транспорт, 2008. С 8-13.
  2. Федюков Ю.А. Режимы работы и диагностика вспомогательных машин электровозов переменного тока. // Локомотив №7 - 2011 г.
  3. Технический анализ порч, неисправностей и непланового ремонта электропоездов за 2008 год. Управление пригородных пассажирских перевозок Департамента пассажирских сообщений ОАО «РЖД», М.: 2009 г.
  4. Костюков В.Н., Науменко А.П. Основы диагностики и мониторинга машин: учеб. пособие. - Омск: Изд-во ОмГТУ, 2011. – 360 с. :ил.
  5. Завидей В.И., Крупенин Н.В. и др. Новые аспекты технологии проведения диагностики вращающихся электрических машин в тепловом и ультрафиолетовом диапазонах излучения. // Энергетика Татарстана. 2008, №4, с.45-48.

 

Цурпаль А.Е. Выбор параметров для диагностирования оборудования вспомогательных цепей электропоездов // Эксплуатационная надежность локомотивного парка и повышение эффективности тяги поездов: матер. Всероссийской науч.-техн. конф. с междунар. участием. - Омск: ОмГУПС, 2012. - С. 143-149

Скачать публикацию


Теги: КОМПАКС-ЭКСПРЕСС-3 диагностика электропоезда МВПС вспомогательные цепи Дата: 11.08.2015
Просмотров: 1352
 

Методика диагностирования электропневматической системы электропоездов

Печать

При диагностировании электропневматической системы реализуется принцип посекционного диагностирования с максимальным вовлечением в процесс штатного оборудования электросекции: компрессора, трансформатора управления, аппаратов цепей управления и органов ручного управления, что обеспечивает автономность от внешних источников воздухоснабжения и высокую автоматизацию процесса диагностирования.

В процессе диагностирования электропневматической системы секции электропоезда комплекс КОМПАКС®-ЭКСПРЕСС-ТР3 осуществляет автоматическое управление процессом испытаний, включающее: питание и управление электрическими цепями и пневматической системой секции электропоезда; управление газодинамическими процессами в пневматической тормозной сети, имитирующими различные режимы работы оборудования; подачу контрольных сигналов в силовые и вспомогательные электрические цепи.

Комплекс определяет количественные характеристики физических величин, используемых в качестве информативных диагностических признаков: напряжение, ток, активное сопротивление, давление, временные интервалы, количество и продолжительность следования импульсов и отображает их на экране монитора в виде специального табло. Встроенная автоматическая экспертная система в соответствии с заложенными правилами, формирует на экране целеуказующие предписания персоналу по дальнейшим действиям в виде текстовых (экспертных) сообщений и обеспечивает качественное отображение диагностических признаков на основе светофорных пиктограмм, соответствующих по цвету степени опасности состояния оборудования.

Литература

  1. Гапанович В.А., Розенберг И.Н. Основные направления развития интеллектуального железнодорожного транспорта // Железнодорожный транспорт. М.: 2011. №4 С. 5-11.
  2. Сизов С.В., Аристов В.П., Костюков В.Н., Костюков А.В. Непрерывный мониторинг состояния моторвагонного подвижного состава // Железнодорожный транспорт. 2008. №6. С. 41-42.
  3. Технический анализ браков, непланового ремонта, повреждения оборудования MBПС, пожарной безопасности и вандализма в электропоездах за 2005 г. МЖД Центральная дирекция по обслуживанию пассажиров в пригородном сообщении, М.: 2006 г.
  4. Патент РФ №2453855 С1, МПК G01R 27/16. Способ диагностики электрических цепей с переменной структурой. Костюков В.Н., Костюков А.В., Казарин Д.В. Заявл. 15.03.2011. Опубл. 20.06.2012 Бюл. №17.
  5. Патент РФ №2457966 С1, МПК В60Т 17/22, G01M 17/08. Способ диагностики технического состояния автотормозной системы электросекции моторвагонного подвижного состава. Костюков В.Н., Костюков А.В., Щелканов А.В. Заявл. 10.05.2011. Опубл. 10.08.2012 Бюл. №22.
  6. Сизов С.В., Аристов В.П., Костюков В.Н., Костюков А.В., Казарин Д.В. Автоматизированная диагностика электрических цепей МВПС // Железнодорожный транспорт. 2010. №5. С. 56 - 58.
  7. Костюков В.Н., Костюков Ал.В., Казарин Д.В. Комплексное диагностирование электропоездов в условиях депо. Евразия Вести. 2012. №9. С. 30.

 

Костюков Ал.В., Щелканов А.В., Казарин Д.В. Методика диагностирования электропневматической системы электропоездов // Эксплуатационная надежность локомотивного парка и повышение эффективности тяги поездов: матер. Всероссийской науч.-техн. конф. с междунар. участием. - Омск: ОмГУПС, 2012. - С. 121-125

Скачать публикацию


Теги: экспертная система диагностика электропоезда КОМПАКС-ЭКСПРЕСС-ТР3 МВПС Дата: 24.07.2015
Просмотров: 1215
 

Методика нормирования диагностических признаков электрических цепей электропоездов

Печать

Для отнесения любого объекта к одному из видов технических состояний необходимо знать границы различия этих состояний, при этом в качестве инструмента различия целесообразно использовать отклонения диагностических признаков от эталонов.

В зависимости от величины отклонения вектора диагностических признаков, определяемого отклонениями входящих в него компонент, традиционно различают следующие основные виды состояний: норма, требует принятия мер, недопустимо. Имея в распоряжении большие объемы экспериментальных данных, полученных на реальных объектах, находящихся в различных технических состояниях, при определении границ могут применяться методы статистического анализа.

Для нормирования диагностических признаков по экспериментальным данным разработана и апробирована методика, описанная в статье.

Представленные в статье примеры определения границ различия состояний хорошо согласуются с данными нормативно-технической документации и подтверждают достигаемую, благодаря имеющимся метрологическим характеристикам и реализованным способам диагностики, высокую различающую способность и достоверность выявления неисправностей в различных группах оборудования электропоездов, в частности, в электрических цепях управления, силовых и вспомогательных цепях.

Значения границ различия состояний, определенные по представленной методике, обеспечивают малую ошибку диагностирования, не превышающую 3% для ошибки первого и 2% для ошибки второго рода с доверительной вероятностью 0.95, что подтверждается результатами эксплуатации систем КОМПАКС®-ЭКСПРЕСС-ТР3, активно используемых в технологических циклах обслуживания и ремонта пригородного подвижного состава в ряде моторвагонных депо ОАО «Российские железные дороги».

Литература

  1. Костюков В.Н. Мониторинг безопасности производства / В.Н. Костюков. - М.: Машиностроение, 2002. - 224 с.
  2. ГОСТ Р 53564-2009. Контроль состояния и диагностика машин. Мониторинг состояния оборудования опасных производств. Требования к системам мониторинга. - М.: Стандартанформ, 2010. - 20 с.
  3. Пат. 2453855 Российская Федерация, МПК G01R 27/56. Способ диагностики электрических цепей с переменной структурой. / Костюков В.Н., Костюков А.В., Казарин Д.В. №2011109704/28 заявл. 15.03.2011; опубл. 20.06.2012.
  4. Казарин Д.В., Костюков А.В. Выбор диагностических признаков электрических цепей электропоездов // Наука, образование, бизнес: Материалы Всероссийской научно-практической конференции ученых, преподавателей, аспирантов, студентов, специалистов промышленности и связи, посвященной Дню радио. - Омск: Полиграфический центр КАН, 2009, С. 189-194.
  5. Костюков B.Н, Костюков А.В., Казарин Д.В. Комплексное диагностирование электропоездов в условиях депо. Евразия Вести. 2012. №9. С. 30.
  6. Костюков В.Н., Костюков А.В. Оценка погрешностей сборки машин виброакустическим методом. Сборка в машиностроении, приборостроении. 2010. №1. С.22-28.

 

Костюков В.Н., Костюков А.В., Казарин Д.В. Методика нормирования диагностических признаков электрических цепей электропоездов // Эксплуатационная надежность локомотивного парка и повышение эффективности тяги поездов: матер. Всероссийской науч.-техн. конф. с междунар. участием. - Омск: ОмГУПС, 2012. - С. 110-116

Скачать публикацию


Теги: диагностика электропоезда диагностический признак КОМПАКС-ЭКСПРЕСС-ТР3 электрическая цепь МВПС Дата: 10.07.2015
Просмотров: 1243
 

Исследование вибрации подшипниковых узлов подвижного состава при изменении частоты вращения

Печать

Подшипниковые узлы, применяемые на подвижном составе, являются ответственными элементами, от технического состояния которых непосредственно зависит надежность подвижного состава и безопасность движения.

Одним из основных требований, предъявляемых к колесно-моторным блокам, является обеспечение заданного ресурса работы. Подшипниковые узлы в значительной степени являются элементами, лимитирующими ресурс электропоезда в целом, и зависят от вибрационного состояния, качества изготовления, ремонта и сборки.

Учитывая повышающуюся интенсивность движения и изношенность парка электропоездов, необходимо использование всех видов статического и динамического мониторинга технического состояния подшипниковых узлов колесно-моторных блоков электропоездов.

Для адекватной оценки технического состояния подшипниковых узлов колесно-моторных блоков требуется знать влияние различных факторов на уровень вибрации.

Целью данной работы является определение зависимости вибропараметров подшипников качения от величины дефекта и частоты вращения вала, для их диагностирования.

Литература

  1. Технический анализ порч, неисправностей и непланового ремонта электропоездов за 2008 г. ОАО «РЖД». - М.: Управление пригородных пассажирских перевозок, 2009.
  2. Костюков, В.Н. Мониторинг безопасности производства / В.Н. Костюков. - М.: Машиностроение, 2002. - 224 с.
  3. Костюков, В.Н. Основы виброакустической диагностики и мониторинга машин: учеб. пособие / В.Н. Костюков, А.П. Науменко. - Омск: Изд-во ОмГТУ, 2011. - 360 с.
  4. Адлер Ю.П., Маркова Е.В., Грановский Ю.В. Планирование эксперимента при поиске оптимальных условий. М.: Наука, 1976. - 277 с.
  5. Спришевский А.И. Подшипники качения. М.: «Машиностроение», 1968. - 632с.

 

Костюков В.Н., Зайцев А.В., Басакин В.В. Исследование вибрации подшипниковых узлов подвижного состава при изменении частоты вращения // Эксплуатационная надежность локомотивного парка и повышение эффективности тяги поездов: матер. Всероссийской науч.-техн. конф. с междунар. участием. - Омск: ОмГУПС, 2012. - С. 92-97

Скачать публикацию


Теги: надежность вибродиагностика подшипников диагностика электропоезда КМБ МВПС Дата: 23.06.2015
Просмотров: 1303
 

Комплексное диагностирование электропоездов в условиях депо

Печать

Принятая система обслуживания и ремонта, изначально опиравшаяся на наличие достаточных ресурсов квалифицированной рабочей силы и значительный запас надежности техники, в начале XX века стала малоэффективной для решения перспективных задач. Многочисленные ручные средства контроля и диагностики, имевшиеся к тому времени в технологическом арсенале депо, в силу низкой достоверности получаемых с их помощью результатов, обусловленных реализацией неэффективных способов поэлементного контроля, низкой автоматизацией процесса постановки диагноза и отсутствием единой нормативной базы контролируемых параметров, не обеспечивали возможности осуществления контроля состояния оборудования в необходимом объеме и качестве. В результате темпы износа парка электропоездов резко возросли.

Кардинальное изменение сложившейся ситуации стало представляться возможным лишь на основе автоматических систем диагностирования различных групп оборудования подвижного состава в комплексе.

Накопленный научно-производственным центром «Динамика» опыт в области мониторинга и диагностики технического состояния оборудования опасных производственных объектов различных отраслей промышленности и железнодорожного транспорта позволил сформулировать требования и создать уникальный аппаратно-программный комплекс - систему КОМПАКС®-ЭКСПРЕСС-ТР3.

Система комплексной диагностики секций электропоездов является инновационной разработкой и предназначена для проведения всесторонней, комплексной оценки технического состояния основных подсистем электропоезда, функционирующих во взаимодействии, на этапах предремонтного и послеремонтного контроля. К числу выбранных подсистем относятся цепи управления и электро-пневматического тормоза, силовые цепи, цепи отопления и вспомогательных машин, включая их электрическую изоляцию, пневматическая система, колесно-моторные блоки и токоприемники. Как показывает статистика, именно данные подсистемы и входящее в них оборудование являются подверженными влиянию «человеческого фактора» при ремонте и наиболее повреждаемыми в процессе эксплуатации. На их долю приходится приблизительно 85% всех повреждений и не менее 80% всех затрат на обслуживание и ремонт.

В системе реализуется эффективный принцип посекционного диагностирования с максимальным вовлечением в процесс испытаний штатного оборудования, что обеспечивает автономность и автоматизацию процесса постановки диагноза.

В процессе испытаний, выполняемых по принципу автоматической имитации различных режимов работы оборудования секции электропоезда, система определяет количественные характеристики параметров и процессов, используемых в качестве информативных диагностических признаков: вибрация, спектры сигналов, напряжение, ток, сопротивление, давление, усилие, временные интервалы, количество импульсов, и отображает их на экране монитора. Встроенная автоматическая экспертная система в соответствии с заложенными правилами формирует на экране целеуказующие предписания персоналу по дальнейшим действиям в виде текстовых (экспертных) сообщений и обеспечивает качественное отображение диагностических признаков на основе светофорных пиктограмм, цвет которых соответствует степени опасности состояния оборудования.

Благодаря применению представленной инновационной разработки впервые стало возможно в депо:

  • достоверно и оперативно выявлять отказы и скрытые дефекты в оборудовании, снижающие к.п.д., ведущие к повышению расхода электроэнергии электропоездом в целом;
  • выявлять элементы и аппараты, ухудшающие условия работы электрических машин и высоковольтной коммутационной аппаратуры;
  • максимально полно использовать ресурс узлов и аппаратов при сохранении их ремонтопригодности, чем снизить потребность в необоснованных ремонтах;
  • обеспечить целенаправленную работу ремонтного персонала на устранение имеющихся дефектов и ликвидацию их фундаментальных причин;
  • снизить трудоемкость операций контроля и наладки электропоездов;
  • практически полностью исключить отказы в работе и неплановые ремонты, ввиду сокращения их главной причины - неудовлетворительного качества ремонтов в депо.

Внедрение систем инновационной технологии комплексного диагностирования технического состояния оборудования секций электропоездов в подобном объеме осуществлено впервые в России и превосходит передовой мировой уровень, что обеспечивает высокий экономический и социальный эффект, является мощным инструментом повышения безопасности и бесперебойности работы железнодорожного транспортного конвейера, создает предпосылки для ускоренной реконструкции системы ремонта на безопасной ресурсосберегающей основе.

 

Костюков В.Н., Костюков А.В., Казарин Д.В. Комплексное диагностирование электропоездов в условиях депо // Евразия Вести. - 2012. - Сент. - С.30

Скачать публикацию


Теги: ресурсосбережение экспертная система диагностика электропоезда КОМПАКС-ЭКСПРЕСС-ТР3 МВПС Дата: 26.05.2015
Просмотров: 1397
 

Ремонт оборудования по техническому состоянию на основе технологии АСУ БЭР™ КОМПАКС

Печать

В связи с широким распространением компьютерных технологий, позволяющих обрабатывать большие массивы данных и автоматизировать планирование технического обслуживания и ремонта оборудования (ТОиР) с учетом данных по диагностике, техническому обслуживанию, ремонту оборудования, данных о фактических отказах оборудования, на рынке появились такие продукты, как CMMS (computerized maintenance management software) и EAM (Enterprise Asset Management). Сущность этих продуктов состоит в том, что они, используя данные о номенклатуре и составе оборудования, периодичности регламентного ТОиР, параметрах окружающей среды, позволяют с различной степенью вероятности планировать работы по диагностике, техническому обслуживанию и ремонту оборудования, складские запасы запасных частей и прочее. Однако, главной проблемой при использовании этих систем является ручной ввод информации при нестабильности параметров окружающей и рабочей среды оборудования.

Реальная стоимость такого тотального управления значительно превышает первоначально декларируемую, создавая иллюзию возможности добиться результата. И если паспортизация оборудования силами консультантов по внедрению и массы специалистов предприятия, в принципе, возможна, то поддержание такой базы в актуальном состоянии на предприятии, насчитывающем десятки тысяч единиц разнообразного оборудования, не реально, что подтверждается многочисленными статьями в прессе и отзывами заказчиков. Реализация системы ППР на таких программных продуктах возможна лишь на небольших и простых по составу технологического оборудования предприятиях из-за большой трудоемкости и субъективности вводимых в систему данных, поэтому более 70% компаний негативно оценивают результаты внедрения этих продуктов, т.к. при этом подходе к ТОиР также не решаются основные проблемы: непредсказуемость момента утраты оборудованием работоспособности, низкая надежность технологического процесса и значительные потери от простоев в период восстановления его работоспособности, высокие расходы на техническое обслуживание и ремонт из-за неполной выработки оборудованием имеющегося ресурса, высокие административные расходы на ввод и обработку информации.

Для эффективного управления основными фондами предприятий мы предлагаем заказчикам абсолютно новое уникальное решение Compacs Asset Management™ (САМ™), базирующееся на объективных, целенаправленных и своевременных данных о состоянии оборудования, предоставляемых системами мониторинга КОМПАКС®, объединенными в единую диагностическую сеть предприятия Compacs-Net®, в совокупности составляющими автоматизированную систему управления безопасной ресурсосберегающей эксплуатацией оборудования АСУ БЭР™ КОМПАКС®.

 

Костюков В.Н., Костюков А.В. Ремонт оборудования по техническому состоянию на основе технологии АСУ БЭР™ КОМПАКС // Автоматизация в промышленности. - 2012. - №9. - С.12-17

Скачать публикацию


Теги: КОМПАКС ресурсосбережение Compacs-Net безопасная эксплуатация АСУ БЭР™ САМ™ Дата: 12.05.2015
Просмотров: 1459
 

Стандарты в области мониторинга технического состояния оборудования опасных производств

Печать

Низкая наблюдаемость скрытых процессов деградации технического состояния производственных комплексов, протекающих вследствие износа и неадекватных действий технологического, обслуживающего и ремонтного персонала, — фундаментальная причина проблем эксплуатации оборудования опасных производств. Анализ надежности технологических установок современных нефтеперерабатывающих и нефтехимических комплексов показывает, что более трех четвертей отказов оборудования приходится на машинные агрегаты, высокая концентрация которых на установках нередко служит причиной инцидентов, аварий и производственных неполадок, вызывающих простои установок и снижающих коэффициенты их технического использования и готовности.

Для исправления данной ситуации необходимо обеспечить наблюдаемость и оценку технического состояния агрегатов при изготовлении и приемке на заводах-потребителях, в процессе ремонта в соответствующих подразделениях предприятий, при монтаже агрегатов и их эксплуатации на технологических установках. Чтобы развитие неисправностей стало наблюдаемым, нужна непрерывная диагностика с автоматической доставкой объективных результатов, независимо от воли исполнителей, лицам, ответственным за эксплуатацию оборудования. Система диагностики и мониторинга (СДМ) должна обнаружить эти неисправности, обеспечить наблюдение за их развитием и своевременно предупредить персонал о необходимости вывода оборудования в ремонт или его экстренной остановки.

В статье рассмотрены действующие государственные стандарты Российской Федерации и стандарты профессиональных общественных организаций, разработанные авторами, определяющие основные требования к мониторингу состояния оборудования опасных производственных объектов, которые могут лежать в основе перехода к мониторингу рисков опасных производственных объектов.

Литература:

  1. Муромцев Ю.Л. Безаварийность и диагностика нарушений в химических производствах. — М.: Химия, 1990. — 144 с.
  2. Внедрение систем КОМПАКС® — обеспечение безаварийной работы непрерывных производств/ Е.А. Малов, И.Б. Бронфин, В.Н. Долгопятов и др.//Безопасность труда в промышленности. — 1994. — № 8. — С. 19-22.
  3. Руководящий документ. Центробежные электроприводные насосные и компрессорные агрегаты, оснащенные системами компьютерного мониторинга для предупреждения аварий и контроля технического состояния КОМПАКС®. Эксплуатационные нормы вибрации. — НПЦ «Динамика», 1994. — 7 с.
  4. Эффективность внедрения стационарных систем вибродиагностики КОМПАКС® на Омском НПЗ / Е.А. Малов, А.А. Шаталов, И.Б. Бронфин и др. // Безопасность труда в промышленности. — 1997. — № 1. — С. 9-15.
  5. Безаварийность производства — путь к повышению рентабельности. Внедрение систем мониторинга КОМПАКС® / А.А. Шаталов, Ф.И. Сердюк, В.Н. Костюков и др.// Химия и технология топлив и масел. — 2000. — №3. — С. 9-13.
  6. Костюков В.Н., Бойченко С.Н., Костюков А. В. Автоматизированные системы управления безопасной ресурсосберегающей эксплуатацией оборудования нефтеперерабатывающих и нефтехимических производств (АСУ БЭР ™ КОМПАКС®). — М.: Машиностроение, 1999. — 163 с.
  7. Костюков В.Н. Мониторинг безопасности производства. — М.: Машиностроение, 2002. — 224 с.
  8. Костюков В.Н., Науменко А.П. Основы виброакустической диагностики и мониторинга машин: Учеб. пособие. — Омск: Изд-во ОмГТУ, 2011. — 360 с.
  9. Костюков А.В., Костюков В.Н. Повышение операционной эффективности предприятий на основе мониторинга в реальном времени. — М.: Машиностроение, 2009. — 192 с.
  10. ГОСТ Р 53563—2009. Контроль состояния и диагностика машин. Мониторинг состояния оборудования опасных производств. Порядок организации. — М.: Стандарт - информ, 2010. — 8 с.
  11. ГОСТ Р 53564—2009. Контроль состояния и диагностика машин. Мониторинг состояния оборудования опасных производств. Требования к системам мониторинга. — М.: Стандартинформ, 2010. — 20 с.
  12. ГОСТ Р 53565—2009. Контроль состояния и диагностика машин. Мониторинг состояния оборудования опасных производств. Вибрация центробежных насосных и компрессорных агрегатов. — М.: Стандартинформ, 2010. — 8 с.
  13. СА 03-002—05. Системы мониторинга агрегатов опасных производственных объектов. Общие технические требования. — М.: Химическая техника, 2005. — 42 с.
  14. СА 03-001—05. Центробежные насосные и компрессорные агрегаты опасных производств. Эксплуатационные нормы вибрации. — М.: Химическая техника, 2005. — 24 с.
  15. СТО-03-002—08. Мониторинг оборудования опасных производств. Порядок организации: Сб. стандартов НПС «Риском». — М., 2008. — С. 25-63.
  16. СТО 03-003—08. Мониторинг оборудования опасных производств. Термины и определения: Сб. стандартов НПС «Риском». — М., 2008. — С. 5-24.
  17. СТО 03-004—08. Мониторинг оборудования опасных производств. Процедуры применения: Сб. стандартов НПС «Риском». — М„ 2008. — С. 65-77.
  18. Сушко А.Е., Грибанов В.А. Проблемы оценки технического состояния динамического оборудования опасных производственных объектов// Безопасность труда в промышленности. — 2011. — № 10. — С. 58-65.
  19. Комплексный мониторинг технологических объектов опасных производств / В.Н. Костюков, С.Н. Бойченко, А.П. Науменко, Е.В. Тарасов // Контроль. Диагностика. — 2008. — № 12. — С. 8-18.
  20. Костюков В.Н., Бойченко С.Н., Костюков А.В. MES-система управления безопасной ресурсосберегающей эксплуатацией оборудования на основе АСУ БЭР™ КОМПАКС® // Мир компьютерной автоматизации. — 2004. — № 4. — С. 35-44.
  21. ГОСТ Р 51901.1—2002. Менеджмент риска. Анализ риска технологических систем. — М.: Госстандарт России, 2003. — 28 с.
  22. Ферапонтов А.В. Оптимизация надзорной деятельности по критериям риска возникновения аварий // Безопасность труда в промышленности. — 2010. — № 8. — С. 3-6.
  23. Концепция совершенствования государственной политики в области обеспечения промышленной безопасности до 2020 г. URL: http://safeprom.ru/articles/detail. php?ID= 15177 (дата обращения 31.05.2012).
  24. АРI 580. Recommended Practice. Risk Based Inspection.

 

Костюков В.Н., Науменко А.П., Костюков Ан.В., Бойченко С.Н., Костюков Ал.В. Стандарты в области мониторинга технического состояния оборудования опасных производств // Безопасность труда в промышленности. - 2012. - №7. - С.30-36

Скачать публикацию


Теги: КОМПАКС ресурсосбережение мониторинг стандарт Дата: 24.04.2015
Просмотров: 1602
 

От систем мониторинга до технологии безопасной ресурсосберегающей эксплуатации оборудования. Результаты внедрения за 20 лет

Печать

Разразившийся экономический кризис, основной причиной которого явилась необъективность оценок состояния реально происходящих процессов в мировой экономике, подчеркивает актуальность разработки и внедрения во всех отраслях экономики системы мониторинга экономического состояния. Построение такой системы позволяет объективно оценить реально протекающие в организациях процессы и своевременно информировать заинтересованные стороны (менеджмент, потребителей, акционеров, поставщиков) об их текущей эффективности с указанием, при ухудшении состояния, основных факторов, оказывающих деструктивное влияние. Вследствие чего задача обеспечения гарантированного уровня безопасности производства с получением запланированного результата при минимальных издержках стоит перед нефтеперерабатывающими (НПЗ) и нефтехимическими (НХЗ) предприятиями достаточно остро.

Эффективность НПЗ и НХЗ в наибольшей степени обусловлена объемом затрат материальных и трудовых ресурсов на ремонт оборудования и объемом потерь от аварий и простоев. Скорость износа оборудования в значительной степени определяется адекватностью воздействия на него производственного и обслуживающего персонала.

На современном этапе для эффективного управления состоянием оборудования нами разработан новый продукт Compacs Asset Management (САМ™), позволяющий на основе баз данных системы КОМПАКС® автоматически формировать отчеты об эксплуатации оборудования за любой период времени, рассчитывать показатели эффективности управления эксплуатацией оборудования технологического комплекса САМ™ Index в реальном времени, а также автоматизировать процесс формирования нарядов на ремонт путем интеграции данных о состоянии оборудования из систем мониторинга КОМПАКС® в модуль ТОРО системы управления предприятием (ERP, ЕАМ).

Литература:

  1. ГОСТ Р 53563-2009. «Мониторинг состояния оборудования опасных производств. Порядок организации». М.: Стандартинформ, 2010. Введен в действие с 01.01.2011 г.
  2. Костюков В.Н. Мониторинг безопасности производства. — М.: Машиностроение, 2002. — 224 с.
  3. ГОСТ Р 53565-2009. «Мониторинг состояния оборудования опасных производств. Вибрация центробежных насосных и компрессорных агрегатов». М.: Стандартинформ, 2010. Введен в действие с 01.01.2011 г.
  4. ГОСТ Р 53564-2009. «Мониторинг состояния оборудования опасных производств. Требования к системам мониторинга». М.: Стандартинформ, 2010. Введен в действие с 01.01.2011 г.
  5. Костюков А.В., Костюков В.Н. Повышение операционной эффективности предприятий на основе мониторинга в реальном времени. — М.: Машиностроение, 2009. — 192 с.

 

Костюков В.Н., Костюков А.В. От систем мониторинга до технологии безопасной ресурсосберегающей эксплуатации оборудования. Результаты внедрения за 20 лет // Совет главных механиков нефтеперерабатывающих и нефтехимических предприятий России и стран СНГ: мат. совещания. - М., 2012. - С. 67-74

Скачать публикацию


Теги: КОМПАКС ресурсосбережение мониторинг Дата: 10.04.2015
Просмотров: 1305
 
Результаты 101 - 110 из 237